Numerical Range Error Estimates for Evaluating Functions of Matrices via the Arnoldi Method

نویسندگان

  • Bernhard Beckermann
  • Lothar Reichel
چکیده

In this talk we propose explicit a priori error bounds for approaching f(A)b by help of the Arnoldi method. Here A is a large real not necessarily symmetric matrix, and f some function analytic on the field of values or numerical range W (A) = {y∗Ay : ‖y‖ = 1}. An essential tool in our work is the inequality ‖Fn(A)‖ ≤ 2 derived in [1] where Fn is the nth Faber polynomial corresponding to W (A), and ‖·‖ denotes euclidean vector norms and the induced spectral matrix norm. We show in a first step how to improve bounds given by Knizhnerman [3] and by Hochbruck and Lubich [2]. Subsequently we give some simple bounds in terms of the numerical range for the exponential function as well as for Stieltjes functions like the pth power of A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials

In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...

متن کامل

Wavelet‎-based numerical ‎method‎ ‎‎‎‎for solving fractional integro-differential equation with a weakly singular ‎kernel

This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel‎. ‎First‎, ‎a collocation method based on Haar wavelets (HW)‎, ‎Legendre wavelet (LW)‎, ‎Chebyshev wavelets (CHW)‎, ‎second kind Chebyshev wavelets (SKCHW)‎, ‎Cos and Sin wavelets (CASW) and BPFs are presented f...

متن کامل

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature

When using the Arnoldi method for approximating f(A)b, the action of a matrix function on a vector, the maximum number of iterations that can be performed is often limited by the storage requirements of the full Arnoldi basis. As a remedy, different restarting algorithms have been proposed in the literature, none of which was universally applicable, efficient, and stable at the same time. We ut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007